Impact of formulation on solid oxygen-entrapping materials to overcome tumor hypoxia.

Megan K McGovern,Emily Witt, Ashley C Rhodes,Jinhee Kim,Vivian R Feig,Jianling Bi, Arielle B Cafi, Sam Hatfield, Ikenna Nwosu,James D Byrne

Journal of biomedical materials research. Part A(2024)

引用 0|浏览0
暂无评分
摘要
Tumor hypoxia, resulting from rapid tumor growth and aberrant vascular proliferation, exacerbates tumor aggressiveness and resistance to treatments like radiation and chemotherapy. To increase tumor oxygenation, we developed solid oxygen gas-entrapping materials (O2-GeMs), which were modeled after clinical brachytherapy implants, for direct tumor implantation. The objective of this study was to investigate the impact different formulations of solid O2-GeMs have on the entrapment and delivery of oxygen. Using a Parr reactor, we fabricated solid O2-GeMs using carbohydrate-based formulations used in the confectionary industry. In evaluating solid O2-GeMs manufactured from different sugars, the sucrose-containing formulation exhibited the highest oxygen concentration at 1 mg/g, as well as the fastest dissolution rate. The addition of a surface coating to the solid O2-GeMs, especially polycaprolactone, effectively prolonged the dissolution of the solid O2-GeMs. In vivo evaluation confirmed robust insertion and positioning of O2-GeMs in a malignant peripheral nerve sheath tumor, highlighting potential clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要