Low-Dose Trypsin Accelerates Wound Healing via Protease-Activated Receptor 2

ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE(2023)

Cited 0|Views3
No score
Abstract
The management of wounds remains a significant healthcare challenge, highlighting the need for effective wound healing strategies. To address this, it is crucial to explore the molecular mechanisms underlying tissue repair as well as explore potential therapeutic approaches. Trypsin, as a serine protease, has been clinically utilized for wound healing for decades; however, it still lacks systemic investigation on its role and related mechanism. This study aimed to investigate the effects of low-dose trypsin on wound healing both in vitro and in vivo. While trypsin is an endogenous stimulus for protease-activated receptor 2 (PAR2), we discovered that both low-dose trypsin and synthesized PAR2 agonists significantly enhanced the migration, adhesion, and proliferation of fibroblasts and macrophages, similar to the natural repair mechanism mediated by mast cell tryptase. Moreover, such cell functions induced by trypsin were largely inhibited by PAR2 blockade, indicating the participation of trypsin via PAR2 activation. Additionally, low-dose trypsin notably expedited healing and regeneration while enhancing collagen deposition in skin wounds in vivo. Importantly, upon stimulation of trypsin or PAR2 agonists, there were significant upregulations of genes including claudin-7 (Cldn7), occludin (Ocln), and interleukin-17A (IL-17A) associated with proliferation and migration, extracellular matrix (ECM), tight junction, and focal adhesion, which contributed to wound healing. In summary, our study suggested that a low-dose trypsin could be a promising strategy for wound healing, and its function was highly dependent on PAR2 activation.
More
Translated text
Key words
protease-activatedreceptor 2 (PAR2),protease,trypsin,agonist,wound healing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined