Mechanistic Aspects of Biphenyl Urea-Based Analogues in Triple-Negative Breast Cancer Cell Lines

Rayna Bandy, Sadisna Shahi, Naana Quagraine, Siavash Shahbazi Nia, Md Sariful Islam Howlader,Kalkunte Srivenugopal,Clifford Stephan,Hiranmoy Das,Constantinos M. Mikelis,Nadezhda A. German

ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE(2023)

引用 0|浏览3
暂无评分
摘要
Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.
更多
查看译文
关键词
triple-negative,breast cancer,mitochondria,OXPHOS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要