Synthesis of thin film infinite-layer nickelates by atomic hydrogen reduction: Clarifying the role of the capping layer

APL MATERIALS(2024)

引用 0|浏览6
暂无评分
摘要
We present an integrated procedure for the synthesis of infinite-layer nickelates using molecular-beam epitaxy with gas-phase reduction by atomic hydrogen. We first discuss challenges in the growth and characterization of perovskite NdNiO3/SrTiO3, arising from post growth crack formation in stoichiometric films. We then detail a procedure for fully reducing NdNiO3 films to the infinite-layer phase, NdNiO2, using atomic hydrogen; the resulting films display excellent structural quality, smooth surfaces, and lower residual resistivities than films reduced by other methods. We utilize the in situ nature of this technique to investigate the role that SrTiO3 capping layers play in the reduction process, illustrating their importance in preventing the formation of secondary phases at the exposed nickelate surface. A comparative bulk- and surface-sensitive study indicates that the formation of a polycrystalline crust on the film surface serves to limit the reduction process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要