Exploring high-performance functionalized corannulene dimers: A DFT-based investigation for novel photovoltaic applications

SYNTHETIC METALS(2024)

Cited 0|Views9
No score
Abstract
Our current research is focused on designing new corannulene derivatives that exhibit significantly improved photovoltaic characteristics. These improvements comprise reduced excitation energy, a narrower optical band gap, enhanced light absorption capabilities, a high dipole moment, and reduced reorganization energies. Theoretical calculations of these parameters could pave the way for the creation of superior molecules for use in advanced solar cell technologies. In this work, we conducted a computational study (TD-DFT/CAM-B3LYP/ 6-311 +G) to examine the optical and electronic characteristics of a series of short-chain materials derived from a central core-based corannulene (A, B, C, D, and E-systems). The effect of various electron-donor side groups (such as: (1) 4-di(2-thienyl) thieno[3,4][1,2,5]-thiadiazole, (2) 2,2-Methyl Cyclopenta dithiophene, (3) Cyclopenta dithiophene, (4) 3,4-ethylene dioxythiophene, and (5) 4,6-di(2-thienyl)thieno[3,4-c][1,2,5]-thiadiazole (DTTTD)) on the electronic and photovoltaic properties of corannulene derivative as an electron-acceptor (such as radiation lifetime (tau), light harvesting efficiency (LHE), and maximum open circuit voltage (Voc)) was studied computationally. Also, the electron localization function (ELF) and the localized-orbital locator (LOL) analyses are used to discover the electronic localizations and delocalizations that occur after the addition of various ligands. The electronic and photovoltaic properties of each of the designed molecular structures were compared with P3HT as a reference. The obtained results showed that each of the designed molecular structures (especially the D-structure) is very efficient in the field of photovoltaics. Therefore, it seems that the D-structure can act (as a more suitable electron-donor than P3HT) together with phenyl-C61-butyric acid methyl ester (PC61BM) (as a good electron-acceptor) and improve the efficiency of solar cells.
More
Translated text
Key words
Corannulene,DFT,Donor -acceptor,Charge transfer,ELF,Solar cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined