Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms

ANALYTICAL CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
In this work, we present a simple and novel digital surface-enhanced Raman spectroscopy (SERS)-microfluidic chip designed for the rapid and accurate quantitative detection of microorganisms. The chip employs a high-density inverted pyramid microcavity (IPM) array to separate and isolate microbial samples. The presence or absence of target microorganisms is determined by scanning the IPM array using SERS and identifying the characteristic Raman bands. This approach allows for the "digitization" of the SERS response of each IPM, enabling quantification through the application of mathematical statistical techniques. Significantly, precise quantitative detection of yeast was achieved within a concentration range of 10(6)-10(9) cells/mL, with the maximum relative standard deviation from the concentration calibrated by the cultivation method being 5.6%. This innovative approach efficiently addresses the issue of irregularities in SERS quantitative detection, which arises due to fluctuations in SERS intensity and poor reproducibility. We strongly believe that this digital SERS-microfluidic chip holds immense potential for diverse applications in the rapid detection of various microorganisms, including pathogenic bacteria and viruses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要