Interlayer Engineering and Prelithiation: Empowering Si Anodes for Low-Pressure-Operating All-Solid-State Batteries.

Small (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览10
暂无评分
摘要
Silicon (Si) anodes, free from the dendritic growth concerns found in lithium (Li) metal anodes, offer a promising alternative for high-energy all-solid-state batteries (ASSBs). However, most advancements in Si anodes have been achieved under impractical high operating pressures, which can mask detrimental electrochemo-mechanical issues. Herein, we effectively address the challenges related to the low-pressure operation of Si anodes in ASSBs by introducing an silver (Ag) interlayer between the solid electrolyte layer (Li6PS5Cl) and anode and prelithiating the anodes. The Si composite electrodes, consisting of Si/polyvinylidene fluoride/carbon nanotubes, are optimized for suitable mechanical properties and electrical connectivity. Although the impact of the Ag interlayer is insignificant at an exceedingly high operating pressure of 70 MPa, it substantially enhances the interfacial contacts under a practical low operating pressure of 15 MPa. Thus, Ag-coated Si anodes outperform bare Si anodes (discharge capacity: 2430 vs 1560 mA h g-1). The robust interfacial contact is attributed to the deformable, adhesive properties and protective role of the in situ lithiated Ag interlayer, as evidenced by comprehensive ex situ analyses. Operando electrochemical pressiometry is used effectively to probe the strong interface for Ag-coated Si anodes. Furthermore, prelithiation through the thermal evaporation deposition of Li metal significantly improves the cycling performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要