Delineation of signaling routes that underlie differences in macrophage phenotypic states

Tiberiu Totu,Jonas Bossart, Katharina Hast,Chen Li, Markus Rottmar,Bettina Sobottka,Guocan Yu, Vanesa Ayala-Nunez,Marija Buljan

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Macrophages represent a major immune cell type in tumor microenvironments, they exist in multiple functional states and are of a strong interest for therapeutic reprogramming. While signaling cascades defining pro-inflammatory macrophages are better characterized, pathways that drive polarization in immunosuppressive macrophages are incompletely mapped. Here, we performed an in-depth characterization of signaling events in primary human macrophages in different functional states using mass spectrometry-based proteomic and phosphoproteomic profiling. Analysis of direct and indirect footprints of kinase activities has suggested PAK2 and PKCalpha kinases as important regulators of in vitro immunosuppressive macrophages (IL-4/IL-13 or IL-10 stimulated). Network integration of these data with the corresesponding transcriptome profiles has further highlighted FOS and NCOR2 as central transcription regulators in immunosuppressive states. Furthermore, we retrieved single cell sequencing datasets for tumors from cancer patients and found that the unbiased signatures identified here through proteomic analysis were able to successfully separate pro-inflammatory macrophage populations in a clinical setting and could thus be used to expand state-specific markers. This study contributes to in-depth multi-omics characterizations of macrophage phenotypic landscapes, which could be valuable for assisting future interventions that therapeutically alter immune cell compartments. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要