Effects of pressure and fluid properties on S-wave attenuation of tight rocks based on ultrasonic experiments

Applied Geophysics(2024)

引用 0|浏览1
暂无评分
摘要
The tight oil/gas reservoirs in China have showed the great exploration prospects and high production potential, with the characteristics of low porosity, low permeability, and significant heterogeneity in formation rocks. It remains a challenge to sort out the relations between reservoir wave responses and rock physical properties, and the further studies on the wave response patterns of tight reservoirs are in an urgent demand. The shear modulus and S- (shear) wave attenuation of rocks are affected by the properties of pore fluid and confining pressure. The ultrasonic wave experiments are performed on eight partially-saturated tight sandstone samples at different confining pressures, and we estimate S-wave attenuation with the spectral-ratio method. Results show that S-wave attenuation decreases with increasing confining pressure, and the water saturation case shows more loss compared to the oil saturation case, while the gas saturation case gives the lowest attenuation. We observe the S-wave relaxation peak at an intermediate water saturation for the gas-water partial-saturation case in general. S-wave attenuation increases with increasing porosity or permeability. Based on the measured rock physical properties, and combined with the Voigt–Reuss–Hill (VRH) average, differential effective medium (DEM) model and squirt-flow model, a tight rock attenuation model is proposed for analyzing the attenuation characteristics of fluid-saturated rocks at different confining pressures. The model reasonably describes the S-wave attenuation characteristics. The model predictions of S-wave attenuation show apparent pressure- and fluid-sensitivity at full saturation and partial saturation conditions. For sample TS1-19 at full saturation with different confining pressures, the S-wave peak attenuation predicted by the model ranges from 11.6 to 69.5, and decreases with confining pressure, while the relaxation frequency shifts to high frequency end. For the partial saturation condition of the sample, the predicted S-wave peak attenuation ranges from 15.5 to 39.8 at a confining pressure of 30 MPa and increases with water saturation, while the relaxation frequency shifts to low frequency end. For all the samples at 30MPa confining pressure, the predicted S-wave attenuation ranges from 5.6 to 38.6. At the full-saturation case, the predicted S-wave attenuation increases with porosity and decreases with confining pressure. For the partial saturation case, the S-wave attenuation predicted with the model and the Voigt and Reuss bounds generally increases with water saturation, whereas the experimentally-measured attenuation exhibits the peak attenuation at an intermediate saturation.
更多
查看译文
关键词
tight rock,S-wave attenuation,rock physics experiment,confining pressure,fluid saturation,squirt flow model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要