Low Back Pain-Induced Dynamic Trunk Muscle Control Impairments Are Associated with Altered Spatial EMG-Torque Relationships

MEDICINE & SCIENCE IN SPORTS & EXERCISE(2024)

引用 0|浏览0
暂无评分
摘要
PurposeWe quantified the relationship between high-density surface electromyographic (HDsEMG) oscillations (in both time and frequency domains) and torque steadiness during submaximal concentric/eccentric trunk extension/flexion contractions, in individuals with and without chronic low back pain (CLBP).MethodsComparisons were made between regional differences in HDsEMG amplitude and HDsEMG-torque cross-correlation and coherence of the thoracolumbar erector spinae (ES), rectus abdominis (RA), and external oblique (EO) muscles between the two groups. HDsEMG signals were recorded from the thoracolumbar ES with two 64-electrode grids and from the RA and EO muscles with a single 64-electrode grid placed over each muscle. Torque signals were recorded with an isokinetic dynamometer. Coherence (delta band (0-5 Hz)) and cross-correlation analyses were used to examine the relationship between HDsEMG and torque signals. For this purpose, we used principal component analysis to reduce data dimensionality and improve HDsEMG-based torque estimation.ResultsWe found that people with CLBP had poorer control during both concentric and eccentric trunk flexion and extension. Specifically, during trunk extension, they exhibited a higher HDsEMG-torque coherence in more cranial regions of the thoracolumbar ES and a higher HDsEMG cross-correlation compared with asymptomatic controls. During trunk flexion movements, they demonstrated higher HDsEMG amplitude of the abdominal muscles, with the center of activation being more cranial and a higher contribution of this musculature to the resultant torque (particularly the EO muscle).ConclusionsOur findings underscore the importance of evaluating torque steadiness in individuals with CLBP. Future research should consider the value of torque steadiness training and HDsEMG-based biofeedback for modifying trunk muscle recruitment strategies and improving torque steadiness performance in individuals with CLBP.
更多
查看译文
关键词
LOW BACK PAIN,HIGH-DENSITY SURFACE EMG,TORQUE STEADINESS,COHERENCE,CROSS-CORRELATION
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要