Skin-Conformable Flexible and Stretchable Ultrasound Transducer for Wearable Imaging.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control(2024)

引用 0|浏览44
暂无评分
摘要
Ultrasound imaging offers a noninvasive, radiation-free method for visualizing internal tissues and organs, with deep penetration capabilities. This has established it as a crucial tool for physicians in diagnosing internal tissue pathologies and monitoring human conditions. Nonetheless, conventional ultrasound probes are often characterized by their rigidity and bulkiness. Designing a transducer that can seamlessly adapt to the contours and dynamics of soft, curved human skin presents significant technical hurdles. We present a novel flexible and stretchable ultrasound transducer (FSUT) designed for adaptability to large-curvature surfaces while preserving superior imaging quality. Central to this breakthrough is the innovative use of screen-printed silver nanowires (AgNWs) coupled with a composite elastic substrate, together ensuring robust and stable electrical and mechanical connections. Standard tensile and fatigue tests verify its durability. The mechanical, electrical, and acoustic properties of FSUTs are characterized using standard methods, with large tensile strains (≥110%), high flexibility ( R ≥ 1.4 mm), and lightweight ( ≤ 1.58 g) to meet the needs of wearable devices. Center frequency and -6-dB bandwidth are approximately 5.3 MHz and 66.47%, respectively. Images of the commercial anechoic cyst phantom yielded an axial and lateral resolution (depths of 10-70 mm) of approximately 0.31 and 0.46, and 0.34 and 0.84 mm, respectively. The complex curved surface imaging capabilities of FSUT were tested on agar-gelatin-based breast cyst phantoms under different curvatures. Finally, ultrasound images of the thyroid, brachial, and carotid arteries were also obtained from volunteer wearing FSUT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要