Numerical investigation of heat and mass transfer in three-dimensional MHD nanoliquid flow with inclined magnetization

Scientific reports(2024)

引用 0|浏览1
暂无评分
摘要
Heat and mass transfer rate by using nanofluids is a fundamental aspect of numerous industrial processes. Its importance extends to energy efficiency, product quality, safety, and environmental responsibility, making it a key consideration for industries seeking to improve their operations, reduce costs, and meet regulatory requirements. So, the principal objective of this research is to analyze the heat and mass transfer rate for three-dimensional magneto hydrodynamic nanoliquid movement with thermal radiation and chemical reaction over the dual stretchable surface in the existence of an inclined magnetization, and viscous dissipation. The flow is rotating with constant angular speed ^* about the axis of rotation because such flows occur in the chemical processing industry and the governing equations of motion, energy, and concentration are changed to ODEs by transformation. The complex and highly nonlinear nature of these equations makes them impractical to solve analytically so tackled numerically at MATLAB. The obtained numerical results are validated with literature and presented through graphs and tables. Increasing the Eckert number from 5≤ Ec≤ 10, a higher Nusselt and Sherwood number was noted for the hybrid nanofluid. By changing the angle of inclination α , the Nu_x performance is noted at 8
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要