Experimental and Numerical Investigation of Flow Boiling in Additive Manufactured Foam Structures With Vapor Pathways

Justin Broughton, Emanuel Torres, Akshith Narayanan,Yogendra K. Joshi

ASME JOURNAL OF HEAT AND MASS TRANSFER(2024)

Cited 0|Views3
No score
Abstract
The unique properties of metal foams make them potential candidates for a range of applications, including microsystem thermal management. Using additive manufacturing to create foam-type structures can improve upon prior thermal solutions by eliminating thermal interface materials and allowing for customization/local control of parameters. In the present investigation, flow boiling in additive-manufactured metal foams is investigated both experimentally and numerically. Two test samples, one with uniform structure and the other with pathways for vapor removal, are compared both experimentally and numerically. A conjugate computational fluid dynamics and heat transfer (CFD-HT) model utilizing a three-dimensional volume of fluid (VOF) model with accompanying evaporation/condensation model provided in-depth visualization of the boiling flow phenomena. The experiments generated the thermohydraulic performance over a range of heat fluxes, demonstrating that the sample incorporating dedicated vapor pathways performed better in both pressure and heat transfer performance metrics compared to the uniform foam. Additionally, negative system-level effects (i.e., hydraulic oscillations) were shown to be abated using the vapor removal structures. The numerical model yielded further insight into the factors contributing to the improved performance. Results indicated the pathways functioned as vapor removal channels, allowing the generated vapor to vent from the foam structure into the lanes. Further computational investigations demonstrated changes in flow regimes, where the addition of vapor channels caused the flow to change from churn to annular. Bubble behavior unique to the vapor pathway structure was studied, showing stagnant regions that eject vapor into the channel.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined