Evaluating Feature Selection Methods and Machine Learning Algorithms for Mapping Mangrove Forests Using Optical and Synthetic Aperture Radar Data

REMOTE SENSING(2023)

引用 0|浏览5
暂无评分
摘要
Mangrove forests, mostly found in the intertidal zone, are among the highest-productivity ecosystems and have great ecological and economic value. The accurate mapping of mangrove forests is essential for the scientific management and restoration of mangrove ecosystems. However, it is still challenging to perform the rapid and accurate information mapping of mangrove forests due to the complexity of mangrove forests themselves and their environments. Utilizing multi-source remote sensing data is an effective approach to address this challenge. Feature extraction and selection, as well as the selection of classification models, are crucial for accurate mangrove mapping using multi-source remote sensing data. This study constructs multi-source feature sets based on optical (Sentinel-2) and SAR (synthetic aperture radar) (C-band: Sentinel-1; L-band: ALOS-2) remote sensing data, aiming to compare the impact of three feature selection methods (RFS, random forest; ERT, extremely randomized tree; MIC, maximal information coefficient) and four machine learning algorithms (DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, light gradient-boosting machine) on classification accuracy, identify sensitive feature variables that contribute to mangrove mapping, and formulate a classification framework for accurately recognizing mangrove forests. The experimental results demonstrated that using the feature combination selected via the ERT method could obtain higher accuracy with fewer features compared to other methods. Among the feature combinations, the visible bands, shortwave infrared bands, and the vegetation indices constructed from these bands contributed the greatest to the classification accuracy. The classification performance of optical data was significantly better than SAR data in terms of data sources. The combination of optical and SAR data could improve the accuracy of mangrove mapping to a certain extent (0.33% to 4.67%), which is essential for the research of mangrove mapping in a larger area. The XGBoost classification model performed optimally in mangrove mapping, with the highest overall accuracy of 95.00% among all the classification models. The results of the study show that combining optical and SAR remote sensing data with the ERT feature selection method and XGBoost classification model has great potential for accurate mangrove mapping at a regional scale, which is important for mangrove restoration and protection and provides a reliable database for mangrove scientific management.
更多
查看译文
关键词
mangrove mapping,machine learning algorithms,feature selection,optical,SAR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要