An Energy-Dense Two-Part Torsion Spring Architecture and Design Tool

IEEE-ASME TRANSACTIONS ON MECHATRONICS(2023)

引用 0|浏览5
暂无评分
摘要
Emerging wearable, assistive, and mobile robots seek to interact with the environment and/or humans in a compliant, dynamic, and adaptable way. Springs are critical to achieving this objective, but the associated increase in volume, mass, and complexity is limiting their application and impact in this rapidly developing field. This article presents a novel rotary spring architecture that is both lightweight and compact. Our two-part spring consists of radially-spaced cantilever beams that interface with an internal, gear-like camshaft. We present the concept and equations governing their mechanics and design. To facilitate broad adoption, we introduce an open-source design tool, which enables the design of custom springs in minutes instead of hours or days. We also empirically demonstrate our design with four test springs and validate the achievement of target spring rates and deflections. Finally, we present several redesigns of existing springs in the robotics literature to demonstrate the wide applicability of our spring architecture.
更多
查看译文
关键词
Design,prosthetics,robotics,series elastic actuators (SEA),springs,wearable robotics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要