Ligand-Mediated Magnetism-Conversion Nanoprobes for Activatable Ultra-High Field Magnetic Resonance Imaging

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览10
暂无评分
摘要
Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S-) ligands lead to short tau '(m) and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged tau '(m) and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.
更多
查看译文
关键词
Ligands,Magnetism-Conversion,Nanoprobes,Ultra-High Field Magnetic Resonance Imaging,pH-Activatable
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要