Investigation of the effectiveness of gelatin hydrolysate in human iPS-RPE cell suspension transplantation

REGENERATIVE THERAPY(2024)

引用 0|浏览9
暂无评分
摘要
Introduction: The retinal pigment epithelium (RPE) plays essential roles in maintaining retinal functions as well as choroidal capillaries and can lead to visual disorders if dysfunctional. Transplantation of human-induced pluripotent stem cell-derived RPE (hiPSC-RPE) is a promising therapy for such RPE impaired conditions including age-related macular degeneration. The challenge with cell suspension transplantation is targeted delivery of graft cells and undesired cell reflux. Gelatin hydrolysate, a soluble variant with specific molecular weight distribution, is examined in this study for its potential use in hiPSC-RPE suspension transplantation, particularly in reducing cell reflux and enhancing RPE engraftment. Methods: A retinal bleb model was created using polydimethylsiloxane (PDMS) soft lithography to quantify cellular reflux. We examined the effects of gelatin hydrolysate on the hiPSC-RPE of various aspects of cell behavior and performance such as cell viability, hypoxia reaction, morphology, induction of inflammation and immune responses. Results: Gelatin hydrolysate at 5 % concentration effectively mitigated cell reflux in vitro mimic, improved cell viability, reduced cell aggregation, and had an inhibitory effect on hypoxic reactions due to cell deposition with hiPSC-RPE. Additionally, gelatin hydrolysate did not affect cell adhesion and morphology, and decreased the expression of major histocompatibility complex class II molecules, which suggests reduced immunogenicity of hiPSC-RPE. Conclusion: Gelatin hydrolysate is considered a valuable and useful candidate for future regenerative therapies in hiPSC-RPE suspension transplantation. (c) 2024, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
Retinal pigment epithelium,Suspension transplantation,Induced pluripotent stem cells,iPS cell therapy,Gelatin,Regenerative medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要