Optimization-based Framework for Selecting Under-frequency Load Shedding Parameters

Waheed Owonikoko, Mazen Elsaadany,Amritanshu Pandey,Mads R. Almassalkhi

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
High penetration of renewable resources results in a power system with lower inertia and higher frequency sensitivity to power imbalances. Such systems are becoming increasingly susceptible to frequency collapse during extreme disturbances. Under-Frequency Load Shedding (UFLS) is a last-resort protection scheme and acts as an emergency brake by shedding load to arrest frequency decline. Current and emerging efforts to optimize UFLS settings and frequency thresholds are mostly network agnostic, ignoring network spatial information. With the prevalence of Distributed Energy Resources (DERs) in the high-renewable paradigm, the power grid is becoming more bidirectional, making some locations in the network less effective for UFLS action than others. This work proposes a Mixed Integer Linear Program that optimizes the UFLS setpoints (prioritizing one location over another) to minimize frequency deviation and load-shed for a given disturbance. The formulation considers system information and DER generation mix at different network locations, increasing model fidelity. The formulation also captures the discrete nature and practical time delays and deadbands associated with UFLS using a minimal set of binary variables, reducing problem complexity. We empirically validate the optimization approach on the dynamic IEEE 39-bus system for performance metrics, including frequency nadir, steady-state frequency and total load shed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要