Variant-specific interactions at the plasma membrane: Heparan sulfate's impact on SARS-CoV-2 binding kinetics

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
The worldwide spread of SARS-CoV-2 has been characterised by the emergence of several variants of concern (VOCs) presenting an increasing number of mutations in the viral genome. The spike glycoprotein, responsible for engaging the viral receptor ACE2, exhibits the highest density of mutations, suggesting an ongoing evolution to optimize viral entry. However, previous studies focussed on isolated molecular interactions, neglecting the intricate composition of the plasma membrane and the interplay between viral attachment factors. Our study explores the role of avidity and of the complexity of the plasma membrane composition in modulating the virus-host binding kinetics during the early stages of viral entry for the original Wuhan strain and three VOCs: Omicron BA.1, Delta, and Alpha. We employ fluorescent liposomes decorated with spike from several VOCs as virion mimics in single-particle tracking studies on native supported lipid bilayers derived from pulmonary Calu-3 cells. Our findings reveal an increase in the affinity of the multivalent bond to the cell surface for Omicron driven by an increased association rate. We show that heparan sulfate (HS), a sulfated glycosaminoglycan commonly expressed on cells' plasma membrane, plays a central role in modulating the interaction with the cell surface and we observe a shift in its role from screening the interaction with ACE2 in early VOCs to an important binding factor for Omicron. This is caused by a ~10-fold increase in Omicron's affinity to HS compared to the original Wuhan strain, as shown using atomic force microscopy-based single-molecule force spectroscopy. Our results show the importance of coreceptors, particularly HS, and membrane complexity in the modulation of the attachment in SARS-CoV-2 VOCs. We highlight a transition in the variants' attachment strategy towards the use of HS as an initial docking site, which likely plays a role in shaping Omicron's tropism towards infection of the upper airways, milder symptoms, and higher transmissibility. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要