Chrome Extension
WeChat Mini Program
Use on ChatGLM

Preparation and Characterization of Conductive/Self-Healing Resin Nanocomposites Based on Tetrafunctional Furan-Functionalized Aniline Trimer Modified Graphene

Feng Wang,Yichuan Zhang, Su Hu,Xiangyu Zhong,Jiangbo Bai, Yang Zhang,Jianwen Bao

Polymers(2024)

Cited 0|Views8
No score
Abstract
The nanocomposites with reversible cross-linking covalent bonds were prepared by reacting furfurylamine (FA)-modified diglycidyl ether of bisphenol A (DGEBA) and furfuryl-functionalized aniline trimer-modified graphene (TFAT-G) with bismaleimide (BMI) via the Diels-Alder (DA) reaction. The successful synthesis of the TFAT modifier is confirmed by nuclear magnetic resonance (NMR) hydrogen spectroscopy and IR spectroscopy tests. The structure and properties of TFAT-G epoxy nanocomposites are characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile, and resistivity. The results show that TFAT-G was uniformly dispersed in the resin, and 1 wt% TFAT-G composites increased to 233% for tensile strength, 63% for elongation at break, 66% for modulus, and 7.8 degrees C for Tg. In addition, the addition of unmodified graphene degrades the mechanical properties of the composite. Overall, the graphene/self-healing resin nanocomposites have both good self-healing function and electrical conductivity by adding 1 wt% modified graphene; this allows for the maintenance of the original 83% strength and 89% electrical conductivity after one cycle of heating repair.
More
Translated text
Key words
nanocomposites,graphene,DA reaction,self-healing,electrical conductivity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined