Chrome Extension
WeChat Mini Program
Use on ChatGLM

State-Space Modeling, Design, and Analysis of the DC-DC Converters for PV Application: A Review

SUSTAINABILITY(2024)

Cited 0|Views3
No score
Abstract
Small-signal models of dc-dc converters are often designed using a state-space averaging approach. This design can help discuss and derive the control-oriented and other frequency-domain attributes, such as input or output impedance parameters. This paper aims to model the dc-dc converters for PV application by employing a capacitor on the input side. The modeling, design, and analysis of the dc-dc converters regarding the input capacitor is limited in the literature. Five dc-dc converters, including buck, boost, buck-boost, CUK, and SEPIC converters, are designed and implemented using the state-space average modeling approach in MATLAB/Simulink. The circuit topology of each converter and the state-space matrices are derived considering every constraint. A rigorous and compelling analysis of the dc-dc converters is carried out to compare system stability and, ultimately, the dynamic performance. The output of the resulting small-signal models has been demonstrated in the time-domain against topology simulations. All the converters are exposed to unpredictable weather conditions and the simulations are carried out in the PSIM software. The perturb and observe (P&O) maximum power point tracking (MPPT) algorithm is applied in all the converters to ensure maximum power point (MPP) achievement. The results showcase that the boost converter outperforms all other converters in terms of stability, settling time, and overshoot.
More
Translated text
Key words
dc-dc converter,maximum power point tracking,MPPT,perturb and observe,state-space modeling
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined