Characterization and Antibacterial Potential of Iron Oxide Nanoparticles in Eradicating Uropathogenic E. coli

ACS OMEGA(2023)

引用 0|浏览6
暂无评分
摘要
Proper management and control measurements are needed to stop the spread of highly pathogenic E. coli isolates that cause urinary tract infections (UTI) by developing new antibacterial agents to ensure the safety of public health. Therefore, the present investigations were used to achieve the synthesis of iron oxide nanoparticles (IONPs) via a simple coprecipitation method using ferric nitrates Fe (NO3)(3) as the precursor and hydrazine solution as the precipitator and to explore the antibacterial activity against eradicating Uropathogenic Escherichia coli (E. coli). The synthesized IONPs were further studied using a UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopic (SEM) analysis. The maximum surface plasmon resonance peak was observed as absorption at 320 nm in a colloidal solution to validate the synthesis of IONPs. The FT-IR analysis was used to identify different photoactive functional groups that were responsible for the reduction of Fe (NO3)(3) to IONPs. The crystalline nature of synthesized IONPs was revealed by XRD patterns with an average particle size ranging as 29 nm. The SEM image was employed to recognize the irregular morphology of synthesized nanoparticles. Moreover, significant antibacterial activity was observed at 1 mg/mL stock solution but after (125, 250, and 500 mu g/mL) dilution, the synthesized IONPs showed moderate activity and became inactive at lower concentrations. The morphological and biochemical tests were used to confirm the presence of E. coli in the samples. Furthermore, the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were carried out to determine the inhibitory concentrations for the isolated bacteria. The isolated E. coli were also subjected to antibiotic sensitivity testing that showed high resistance to antibiotics such as penicillin and amoxicillin. Thus, the findings of this study were to use IONPs against antibiotic resistance that has been developed in an inappropriate way.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要