Chrome Extension
WeChat Mini Program
Use on ChatGLM

Low-Dose Chemotherapy Preferentially Shapes the Ileal Microbiome and Augments the Response to Immune Checkpoint Blockade by Activating AIM2 Inflammasome in Ileal Epithelial Cells

ADVANCED SCIENCE(2024)

Cited 0|Views29
No score
Abstract
Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity. Low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells without causing intestinal toxicity, resulting in the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, shaping the ileal microbiome pattern and augmenting antitumor responses to anti-PD1 therapy.image
More
Translated text
Key words
AIM2 inflammasome,chemotherapy,gut microbiome,ileal epithelial cells,immune checkpoint blockade,lactobacillus,segmented filamentous bacterium
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined