Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties

Edward R Neves, Achal Anand, Joseph Mueller, Roddel A Remy, Hui Xu,Kim A Selting,Jann N. Sarkaria,Brendan AC Harley, Sara Pedron-Haba

bioRxiv the preprint server for biology(2024)

引用 0|浏览5
暂无评分
摘要
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma. Significance The control of aberrant hyaluronan metabolism in the tumor microenvironment can improve the efficacy of current treatments. Bioengineered preclinical models demonstrate potential to predict, stratify and accelerate the development of cancer treatments. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要