Chrome Extension
WeChat Mini Program
Use on ChatGLM

Copper Isotope Compositions Measured Using a Sapphire Dual Path MC-ICPMS with a Collision/Reaction Cell

Analytical chemistry(2024)

Cited 0|Views13
No score
Abstract
We present a new approach to Cu isotopic measurements using a state-of-the-art Nu Sapphire multicollector inductively coupled plasma source mass spectrometer equipped with a collision/reaction cell (CRC-MC-ICPMS). We investigate the effects of Na doping and Cu concentration mismatch between bracketing standard and unknown samples and demonstrate the efficacy of introducing a He-H-2 gas mix into the CRC to efficiently eliminate the sample matrix-based (ArNa+)-Ar-40-Na-23 isobaric interference on Cu-63(+). This capability is crucial when measuring samples with high Na/Cu ratios, such as some biological samples, which have significantly different chemical compositions compared to most geological samples. Moreover, considering the necessity of obtaining large data sets for biological samples to ensure reliable interpretations, the implementation of a CRC for mitigating the (ArNa+)-Ar-40-Na-23 interference offers the advantage of minimizing the requirement for extensive Cu chemical separation procedure prior to Cu isotopic measurements. Our results demonstrate that the accurate determination of the delta Cu-65 values is achievable for samples with Na/Cu concentration ratios of up to similar to 65, even when measuring 100 ppb Cu solutions (equivalent to a signal of similar to 3.5-4 V total Cu). Furthermore, our results showcase a good short-term repeatability on delta Cu-65 for pure Cu standard solutions (NIST SRM 976 and Cu-IPGP), typically of 0.05 parts per thousand (2 SD) when measuring >50 ppb Cu solutions. Our long-term external reproducibility stands at approximately 0.07 parts per thousand (2 SD). This value accounts for the variable Cu concentrations analyzed across the different analytical sequences (from 10 to 100 ppb Cu solutions). To validate the robustness of our analytical method, we first conduct a comparison between data sets from mice brains processed twice through column chemistry using a Thermo Finnigan Neptune MC-ICPMS and a Nu Sapphire CRC-MC-ICPMS in CRC mode. This comparison serves to verify the reliability of our method for measuring Cu isotopic composition using the CRC on samples with a low Na/Cu ratio after traditional chemical processing. Then, we compare the data sets obtained for biological standards (tuna fish ERM-CE 464 (IRMM) and human serum Seronorm Trace Elements Serum L-1) processed either once, or twice, through column chemistry and demonstrate that the CRC allows accurate Cu isotopic measurements of the samples processed only once and therefore with a higher Na/Cu ratio.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined