Single-Cell Study Unveils Lead Lifespan in Blood Cell Populations Follows a Universal Lognormal Distribution with Individual Skewness

ANALYTICAL CHEMISTRY(2024)

引用 0|浏览26
暂无评分
摘要
Lead is a widespread environmental hazard that can adversely affect multiple biological functions. Blood cells are the initial targets that face lead exposure. However, a systematic assessment of lead dynamics in blood cells at single-cell resolution is still absent. Herein, C57BL/6 mice were fed with lead-contaminated food. Peripheral blood was harvested at different days. Extracted red blood cells and leukocytes were stained with 19 metal-conjugated antibodies and analyzed by mass cytometry. We quantified the time-lapse lead levels in 12 major blood cell subpopulations and established the distribution of lead heterogeneity. Our results show that the lead levels in all major blood cell subtypes follow lognormal distributions but with distinctively individual skewness. The lognormal distribution suggests a multiplicative accumulation of lead with stochastic turnover of cells, which allows us to estimate the lead lifespan of different blood cell populations by calculating the distribution skewness. These findings suggest that lead accumulation by single blood cells follows a stochastic multiplicative process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要