Plasmon induced hot carrier distribution in Ag20-CO composite

ChemPhysChem(2024)

引用 0|浏览0
暂无评分
摘要
The interaction between plasmons and the molecules leads to the transfer of plasmon-induced hot carriers, presenting innovative opportunities for controlling chemical reactions on sub-femtosecond timescales. Through real-time time-dependent density functional theory simulations, we have investigated the enhancement of the electric field due to plasmon excitation and the subsequent generation and transfer of plasmon-induced hot carriers in a linear atomic chain of Ag-20 and an Ag-20-CO composite system. By applying a Gaussian laser pulse tuned to align with the plasmon frequency, we observe a plasmon-induced transfer of hot electrons from the occupied states of Ag to the unoccupied molecular orbitals of CO. Remarkably, there is a pronounced accumulation of hot electrons and hot holes on the C and O atoms. This phenomenon arises from the electron migration from the inter-nuclear regions of the C-O bond towards the individual C and O atoms. The insights garnered from our study hold the potential to drive advancements in the development of more efficient systems for catalytic processes empowered by plasmonic interactions.
更多
查看译文
关键词
plasmons,molecules,electric field,TD-DFT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要