RCLSTMNet: A Residual-convolutional-LSTM Neural Network for Forecasting Cutterhead Torque in Shield Machine

International Journal of Control, Automation and Systems(2024)

引用 0|浏览5
暂无评分
摘要
During tunneling process, it is of critical importance to dynamically adjust operation parameters of shield machine due to changes of geological conditions. Cutterhead torque is one of the key load parameters, and its accurate prediction could adjust operational parameters including cutterhead rotational speed and tunneling speed in advance and avoid potential cutterhead jamming. Based on operation and state data collected by the monitoring system, we propose a residual-convolutional-LSTM neural network (RCLSTMNet) for forecasting cutter head torque in shield machine. On the basis of correlation analysis, parameters closely related to cutter head torque are selected as inputs by employing cosine similarity, which significantly reduces input dimension. Convolutional-LSTM neural network is fused and constructed for extracting deep useful features, while residual network module is utilized to avoid gradient disappearing and improve regression performance. Comparisons with recent data-driven cutterhead torque prediction methods are made on the actual engineering datasets, which demonstrate the presented RCLSTMNet outperforms the other data driven models in most cases. Moreover, the predicted curves of cutterhead torque using the proposed RCLSTMNet coincide with the actual curves much better than predicted curves using the other models. Meanwhile, the highest and average accuracy of RCLSTMNnet reach 98.1% and 95.6%, respectively.
更多
查看译文
关键词
Cosine similarity,cutterhead torque prediction,residual-convolutional-LSTM neural network,shield machine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要