Tracking Surface Charge Dynamics on Single Nanoparticles

arxiv(2024)

引用 0|浏览12
暂无评分
摘要
Surface charges play a fundamental role in physics and chemistry, particularly in shaping the catalytic properties of nanomaterials. Tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate real-time access to the nanoscale charge dynamics on dielectric nanoparticles employing reaction nanoscopy. We present a four-dimensional visualization of the non-linear charge dynamics on strong-field irradiated single SiO_2 nanoparticles with femtosecond-nanometer resolution and reveal how surface charges affect surface molecular bonding with quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced healthcare.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要