Simultaneous and site-specific profiling of heterogeneity and turnover in protein S-acylation by intact S-acylated peptide analysis with a cleavable bioorthogonal tag

ANALYST(2024)

引用 0|浏览6
暂无评分
摘要
Protein S-acylation is an important lipid modification characteristic for heterogeneity in the acyl chain and dynamicity in the acylation/deacylation cycle. Most S-acylproteomic research has been limited by indirect identification of modified proteins/peptides without attached fatty acids, resulting in the failure to precisely characterize S-acylated sites with attached fatty acids. The study of S-acylation turnover is still limited at the protein level. Herein, aiming to site-specifically profile both the heterogeneity and the turnover of S-acylation, we first developed a site-specific strategy for intact S-acylated peptide analysis by introducing an acid cleavable bioorthogonal tag into a metabolic labelling method (ssMLCC). The cleavable bioorthogonal tag allowed for the selective enrichment and efficient MS analysis of intact S-acylated peptides so that S-acylated sites and their attached fatty acids could be directly analysed, enabling the precise mapping of S-acylated sites, as well as circumventing false positives from previous studies. Moreover, 606 S-palmitoylated (C16:0) sites of 441 proteins in HeLa cells were identified. All types of S-acylated peptides were further characterized by an open search, providing site-specific profiling of acyl chain heterogeneity, including S-myristoylation, S-palmitoylation, S-palmitoleylation, and S-oleylation. Furthermore, site-specific monitoring of S-palmitoylation turnover was achieved by coupling with pulse-chase methods, facilitating the detailed observation of the dynamic event at each site in multi-palmitoylated proteins, and 85 rapidly cycling palmitoylated sites in 79 proteins were identified. This study provided a strategy for the precise and comprehensive analysis of protein S-acylation based on intact S-acylated peptide analysis, contributing to the further understanding of its complexity and biological functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要