Experimental study and kinetic modeling of high temperature and pressure CO2 mineralization

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL(2024)

引用 0|浏览2
暂无评分
摘要
The potential for in-situ CO2 sequestration was analyzed experimentally for one basaltic hyaloclastite sample from the Nesjavellir geothermal reservoir in Iceland and three metasedimentary rock samples from the K & imath;z & imath;ldere geothermal field in Turkey. Based on batch reaction experiments, this paper demonstrates the interaction between a CO2 gas-charged fluid and rock samples from these reservoirs. The experiments were conducted at 260 degrees C and 0.8 MPa, and 105 degrees C and 17 MPa for the basaltic and metasedimentary rocks, respectively. The experimental results indicate that CO2 sequestration within the glassy basaltic rocks is hampered by zeolite, chlorite, and anhydrite, which compete with carbonate minerals to uptake divalent cations at the P-T conditions applied. In contrast, the carbonation process for the metasedimentary rocks is inhibited by their mineralogical composition. Generally, these rocks are less reactive and provide an insufficient supply of divalent cations. The batch reactor experiments were numerically simulated with the PHREEQC geochemical modeling program. The simulations indicate that CO2 sequestration is feasible at the tested P-T conditions, provided that silicate and SO4 mineralization is suppressed for the basaltic rocks and that there is an effective source of divalent cations for the metasedimentary rocks.
更多
查看译文
关键词
CO2 injection,Geothermal,Batch reactor experiment,PHREEQC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要