Mitochondrial reverse electron transport in myeloid cells perpetuates neuroinflammation.

bioRxiv : the preprint server for biology(2024)

Cited 0|Views29
No score
Abstract
Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS) 1 . Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells 2 . However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex II (CII) and I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). Blocking RET in pro-inflammatory myeloid cells protected the central nervous system (CNS) against neurotoxic damage and improved functional outcomes in animal disease models in vivo . Our data show that RET in myeloid cells is a potential new therapeutic target to foster neuroprotection in smouldering inflammatory CNS disorders 3 .
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined