The fate of rice crop residues and context-dependent greenhouse gas emissions: Model-based insights from Eastern India

JOURNAL OF CLEANER PRODUCTION(2024)

引用 0|浏览9
暂无评分
摘要
Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a 'no burn' pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of ricewheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a -0.2, 1.8, or 3.1 Mg CO2e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8-4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative 'no burn' residue management practices.
更多
查看译文
关键词
Soil carbon,Rice residue burning,Life cycle assessment,Greenhouse gases,Climate change
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要