Nanoparticles Based on Natural Lipids Reveal Extent of Impacts of Designed Physical Characteristics on Biological Functions

ACS NANO(2024)

引用 0|浏览4
暂无评分
摘要
Nanoparticles based on lipids (LNPs) are essential in pharmaceuticals and intercellular communication, and their design parameters span a diverse range of molecules and assemblies. In bridging the gap in insight between extracellular vesicles (EVs) and synthetic LNPs, one challenge is understanding their in-cell/in-body behavior when simultaneously assessing more than one physical characteristic. Herein, we demonstrate comprehensive evaluation of LNP behavior by using LNPs based on natural lipids (N-LNPs) with designed physical characteristics: size tuned using microfluidic methods, surface fluidity designed based on EV components, and stiffness tuned using biomolecules. We produce 12 types of N-LNPs having different physical characteristics-two sizes, three membrane fluidities, and two stiffnesses for in vitro evaluation-and evaluate cellular uptake vitality and endocytic pathways of N-LNPs based on the physical characteristics of N-LNPs. To reveal the extent of the impact of the predesigned physical characteristics of N-LNPs on cellular uptakes in vivo, we also carried out animal experiments with four types of N-LNPs having different sizes and fluidities. The use of N-LNPs has helped to clarify the extent of the impact of inextricably related, designed physical characteristics on transportation and provided a bidirectional guidepost for the streamlined design and understanding of the biological functions of LNPs.
更多
查看译文
关键词
Lipid nanoparticle,Extracellular vesicle,Microfluidics,Physical characteristic,Cellular uptake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要