Time Resolution of a SiGe BiCMOS Monolithic Silicon Pixel Detector without Internal Gain Layer with a Femtosecond Laser

M. Milanesio, L. Paolozzi, T. Moretti, A. Latshaw, L. Bonacina, R. Cardella, T. Kugathasan, A. Picardi, M. Elviretti, H. Rücker, R. Cardarelli, L. Cecconi, C. A. Fenoglio, D. Ferrere,S. Gonzalez-Sevilla, L. Iodice, R. Kotitsa, C. Magliocca, M. Nessi, A. Pizarro-Medina, J. Sabater Iglesias, I. Semendyaev, J. Saidi,M. Vicente Barreto Pinto, S. Zambito,G. Iacobucci

Journal of Instrumentation(2024)

引用 0|浏览0
暂无评分
摘要
The time resolution of the second monolithic silicon pixel prototype produced for the MONOLITH H2020 ERC Advanced project was studied using a femtosecond laser. The ASIC contains a matrix of hexagonal pixels with 100 μm pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Silicon wafers with 50 μm thick epilayer with a resistivity of 350 Ωcm were used to produce a fully depleted sensor. At the highest frontend power density tested of 2.7 W/cm2, the time resolution with the femtosecond laser pulses was found to be 45 ps for signals generated by 1200 electrons, and 3 ps in the case of 11k electrons, which corresponds approximately to 0.4 and 3.5 times the most probable value of the charge generated by a minimum-ionizing particle. The results were compared with testbeam data taken with the same prototype to evaluate the time jitter produced by the fluctuations of the charge collection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要