Boundary Attention: Learning to Localize Boundaries under High Noise

arxiv(2024)

引用 0|浏览7
暂无评分
摘要
We present a differentiable model that infers explicit boundaries, including curves, corners and junctions, using a mechanism that we call boundary attention. Boundary attention is a boundary-aware local attention operation that, when applied densely and repeatedly, progressively refines a field of variables that specify an unrasterized description of the local boundary structure in every overlapping patch within an image. It operates in a bottom-up fashion, similar to classical methods for sub-pixel edge localization and edge-linking, but with a higher-dimensional description of local boundary structure, a notion of spatial consistency that is learned instead of designed, and a sequence of operations that is end-to-end differentiable. We train our model using simple synthetic data and then evaluate it using photographs that were captured under low-light conditions with variable amounts of noise. We find that our method generalizes to natural images corrupted by real sensor noise, and predicts consistent boundaries under increasingly noisy conditions where other state-of-the-art methods fail.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要