Investigation of the internal physical and chemical changes of a cylindrical lithium-ion battery during thermal runaway

JOURNAL OF CLEANER PRODUCTION(2024)

Cited 0|Views6
No score
Abstract
This study delves into the critical safety issue of thermal runaway (TR) in lithium-ion batteries (LIBs), particularly focusing on the physical and chemical changes occurring in the electrode materials during temperature escalation. We investigate a commercial 18650 type 2.6 Ah Li[Ni5Co2Mn3]O2/graphite battery, tracing changes from room temperature to the point of TR. Our findings reveal that the negative electrode experiences gradual decomposition and regeneration of the solid electrolyte interface (SEI) film, reacting with the electrolyte to form compounds such as Li2CO3 and LiF on its surface. Similarly, the positive electrode also generates Li2CO3 on its surface as temperature rises. Notably, at 185 degrees C, there is a partial disintegration of the positive electrode particles, accompanied by a structural transformation from the LiMO2 (M representing Ni, Co, and Mn) R-3m layered structure to a disordered spinel LiM2O4. This research contributes to a deeper understanding of the TR mechanism in LIBs, offering valuable insights for material researchers in designing safer battery systems.
More
Translated text
Key words
Lithium-ion battery,Thermal runaway mechanism,Decomposition reaction,Particles broken,Phase change
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined