Chrome Extension
WeChat Mini Program
Use on ChatGLM

Confined Meson Excitations in Rydberg-Atom Arrays Coupled to a Cavity Field

Tharnier O. Puel,Tommaso Macrì

arxiv(2023)

Cited 0|Views4
No score
Abstract
Confinement is a pivotal phenomenon in numerous models of high-energy and statistical physics. In this study, we investigate the emergence of confined meson excitations within a one-dimensional system, comprising Rydberg-dressed atoms trapped and coupled to a cavity field. This system can be effectively represented by an Ising-Dicke Hamiltonian model. The observed ground-state phase diagram reveals a first-order transition from a ferromagnetic-subradiant phase to a paramagnetic-superradiant phase. Notably, a quench near the transition point within the ferromagnetic-subradiant phase induces meson oscillations in the spins and leads to the creation of squeezed-vacuum light states. We suggest a method for the photonic characterization of these confined excitations, utilizing homodyne detection and single-site imaging techniques to observe the localized particles. The methodologies and results detailed in this paper are feasible for implementation on existing cavity-QED platforms, employing Rydberg-atom arrays in deep optical lattices or optical tweezers.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined