Integrated control strategy for dual sludge ages in the high-concentration powder carrier bio-fluidized bed (HPB) technology: Enhancing municipal wastewater treatment efficiency

JOURNAL OF ENVIRONMENTAL MANAGEMENT(2024)

引用 0|浏览2
暂无评分
摘要
The high-concentration powder carrier bio-fluidized bed (HPB) technology is an emerging approach that enables on-site upgrading of wastewater treatment plants (WWTPs). HPB technology promotes the formation of biofilm sludge with micron-scale composite powder carriers as the core and suspended sludge mainly composed of flocs surrounding the biofilm sludge. This study proposed a novel integrated strategy for assessing and controlling the sludge ages in suspended/bio-film activated sludge supported by micron-scale composite powder carrier. Utilizing the cyclone unit and the corresponding theoretical model, the proposed strategy effectively addresses the sludge ages contradiction between denitrifying bacteria and polyphosphate-accumulating organisms (PAOs), thereby enhancing the efficiency of municipal wastewater treatment. The sludge age of the suspended (25 d) and bio-film (99 d) sludge, calculated using the model, contribute to the simultaneous removal of nitrogen and phosphorus. Meanwhile, the model further estimates distinct contributions of suspended and bio-film sludge to chemical oxygen demand (COD) and total nitrogen (TN), which are 55% and 42% for COD, 20% and 57% for TN of suspended sludge and bio-film sludge, respectively. This suggests that the contribution of suspended sludge and bio-film sludge to COD and TN removal efficiency can be determined and controlled by the operational conditions of the cyclone unit. Additionally, the simulation values for COD, ammonia nitrogen (NH4+-N), TN and total phosphorus (TP) closely align with the actual values of WWTPs over 70 days (p < 0.001) with the correlation coefficients (R-2) of 0.9809, 0.9932, 0.9825, and 0.837, respectively. These results support the theoretical foundation of HPB technology for simultaneous nitrogen and phosphorus removal in sewage treatment plants. Therefore, this model serves as a valuable tool to guide the operation, design, and carrier addition in HPB technology implementation.
更多
查看译文
关键词
Theoretical model,HPB technology,Suspended sludge,Bio-film sludge,Denitrification and phosphorus removal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要