谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Hard X-ray Generation and Detection of Nanometer-Scale Localized Coherent Acoustic Wave Packets in SrTiO_3 and KTaO_3

arxiv(2023)

引用 0|浏览54
暂无评分
摘要
We demonstrate that the absorption of femtosecond x-ray pulses can excite quasi-spherical high-wavevector coherent acoustic phonon wavepackets using an all x-ray pump and probe scattering experiment. The time- and momentum-resolved diffuse scattering signal is consistent with strain pulses induced by the rapid electron cascade dynamics following photoionization at uncorrelated excitation centers. We quantify key parameters of this process, including the localization size of the strain wavepacket and the energy absorption efficiency, which are determined by the photoelectron and Auger electron cascade dynamics, as well as the electron-phonon interaction. In particular, we obtain the localization size of the observed strain wave packet to be 1.5 and 2.5 nm for bulk SrTiO_3 and KTaO_3 single crystals, even though there are no nanoscale structures or light-intensity patterns that would ordinarily be required to generate acoustic waves of wavelengths much shorter than the penetration depth. Whereas in GaAs and GaP we do not observe a signal above background. The results provide crucial information on x-ray matter interactions, which sheds light on the mechanism of x-ray energy deposition, and the study of high wavevector acoustic phonons and thermal transport at the nanoscale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要