Design of multi-material structures using material jetting technology: Topology optimisation, numerical analysis and experiments

COMPOSITE STRUCTURES(2024)

引用 0|浏览5
暂无评分
摘要
This paper presents a thorough experimental/numerical validation of optimised multi-material structures fabricated by material jetting technology. The proposed methodology uses, on the one hand, non-uniform rational basis spline (NURBS) entities to represent the geometric descriptor associated with each material phase constituting the continuum and, on the other hand, a general multi-phase material interpolation scheme to penalise the stiffness tensor of the structure. Two design requirements are included in the problem formulation: the lightness and the minimum length scale of each material phase. The influence of the integer parameters intervening in the definition of the NURBS entity and the influence of different combinations of material phases on the optimised solutions are investigated. The proposed approach is applied to 2D and 3D benchmark structures subjected to prescribed displacements representative of a three-point bending test. Based on the result of the topology optimisation process one of the optimised solutions, balancing the requirements of structural stiffness, lightness, and manufacturing constraints, is selected, manufactured and tested. A comparison between experimental and numerical results (obtained by non-linear analyses) is carried out to show the effectiveness of the approach.
更多
查看译文
关键词
Topology optimisation,Dirichlet's boundary conditions,Multi-material structures,NURBS hyper-surfaces,Three-point bending test,Material jetting technology,Additive manufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要