Confining Co1.11Te2 nanoparticles within mesoporous hollow carbon combination sphere for fast and ultralong sodium storage

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

Cited 0|Views5
No score
Abstract
Co1.11Te2 nanoparticles are in-situ uniformly grown within mesoporous hollow carbon combination sphere (MHCCS@Co1.11Te2) using a hard-template and spray drying process, solution impregnation and pyrolysis tellurization. Material characterizations reveal that Co1.11Te2, with a diameter of similar to 20 nm, is attached to the internal walls of the unit spheres or embedded in the mesopore shells of the unit spheres, presenting a distinctive "ships-in-combination-bottles" nanoencapsulation structure. In sodium-ion half-cells, MHCCS@Co1.11Te2 exhibits excellent cycling stability, achieving reversible capacities of 257 mAh/g at 0.5 A/g after 250 cycles, 235 mAh/g at 1.0 A/g after 300 cycles and 161 mAh/g at 10.0 A/g after 1900 cycles. Electrochemical kinetic analyses and ex-situ characterizations reveal rapid electron/Na+ transport kinetics, prominent surface pseudocapacitive behavior, robust nanocomposite structure, and multi-step conversion reactions of sodium polytellurides. In sodium-ion full-cells, MHCCS@Co1.11Te2 still demonstrates stable cycling performance at 1.0 and 5.0 A/g and excellent rate capability. The superior electrochemical performance is associated with the nanoencapsulation structure based on mesoporous hollow carbon combination spheres, which promotes electron conduction and Na+ transport. The space-confined effect maintains the high electrochemical activity and cycling stability of Co1.11Te2.
More
Translated text
Key words
Anode,Sodium-ion batteries,Co1.11Te2,Carbon combination sphere
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined