Finite element modeling to predict the influence of anatomic variation and implant placement on performance of biological intervertebral disc implants

JOR SPINE(2023)

引用 0|浏览8
暂无评分
摘要
Background Tissue-engineered intervertebral disc (TE-IVD) constructs are an attractive therapy for treating degenerative disc disease and have previously been investigated in vivo in both large and small animal models. The mechanical environment of the spine is notably challenging, in part due to its complex anatomy, and implants may require additional mechanical support to avoid failure in the early stages of implantation. As such, the design of suitable support implants requires rigorous validation. Methods We created a FE model to simulate the behavior of the IVD cages under compression specific to the anatomy of the porcine cervical spine, validated the FE model using an animal model, and predicted the effects of implant location and vertebral angle of the motion segment on implant behavior. Specifically, we tested anatomical positioning of the superior vertebra and placement of the implant. We analyzed corresponding stress and strain distributions. Results Results demonstrated that the anatomical geometry of the porcine cervical spine led to concentrated stress and strain on the posterior side of the cage. This stress concentration was associated with the location of failure of the cages reported in vivo, despite superior mechanical properties of the implant. Furthermore, placement of the cage was found to have profound effects on migration, while the angle of the superior vertebra affected stress concentration of the cage. Conclusions This model can be utilized both to inform surgical procedures and provide insight on future cage designs and can be adopted to models without the use of in vivo animal models.
更多
查看译文
关键词
cervical spine,finite element analysis,intervertebral disc implant,large animal model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要