On elementary cellular automata asymptotic (a)synchronism sensitivity and complexity

Latin American Symposium on Theoretical Informatics(2023)

引用 0|浏览4
暂无评分
摘要
Among the fundamental questions in computer science is that of the impact of synchronism/asynchronism on computations, which has been addressed in various fields of the discipline: in programming, in networking, in concurrence theory, in artificial learning, etc. In this paper, we tackle this question from a standpoint which mixes discrete dynamical system theory and computational complexity, by highlighting that the chosen way of making local computations can have a drastic influence on the performed global computation itself. To do so, we study how distinct update schedules may fundamentally change the asymptotic behaviors of finite dynamical systems, by analyzing in particular their limit cycle maximal period. For the message itself to be general and impacting enough, we choose to focus on a “simple” computational model which prevents underlying systems from having too many intrinsic degrees of freedom, namely elementary cellular automata. More precisely, for elementary cellular automata rules which are neither too simple nor too complex (the problem should be meaningless for both), we show that update schedule changes can lead to significant computational complexity jumps (from constant to superpolynomial ones) in terms of their temporal asymptotes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要