Maximum bound principle preserving and energy decreasing exponential time differencing schemes for the matrix-valued Allen-Cahn equation

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
This work delves into the exponential time differencing (ETD) schemes for the matrix-valued Allen-Cahn equation. In fact, the maximum bound principle (MBP) for the first- and second-order ETD schemes is presented in a prior publication [SIAM Review, 63(2), 2021], assuming a symmetric initial matrix field. Noteworthy is our novel contribution, demonstrating that the first- and second-order ETD schemes for the matrix-valued Allen-Cahn equation – both being linear schemes – unconditionally preserve the MBP, even in instances of nonsymmetric initial conditions. Additionally, we prove that these two ETD schemes preserve the energy dissipation law unconditionally for the matrix-valued Allen-Cahn equation. Some numerical examples are presented to verify our theoretical results and to simulate the evolution of corresponding matrix fields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要