Moist Heat Synthesis of Magnetic EGCG-Cappedα-Fe2O3 Nanoparticles and Their In Vitro and In Silico Interactions with Pristine HSA- and NDM-1-Producing Bacteria.

ACS Omega(2023)

引用 0|浏览2
暂无评分
摘要
A simple, facile, moist-heating (e.g., autoclave), one-step procedure for EGCG-mediated biosynthesis of narrow-size magnetic iron oxide (α-Fe2O3) nanoparticles (EGCG-MINPs) was developed. The influence of pH of the reaction mixture over the size distribution of as-synthesized EGCG-MINPs was investigated systematically by employing UV-visible (UV-vis) spectroscopy and dynamic light scattering (DLS)-based hydrodynamic size, surface charge (zeta-potential), and polydispersity index (PDI). The FE-SEM, TEM, and XRD characterizations revealed that the EGCG-MINPs synthesized at pH 5.0 were in the size range of 6.20-16.7 nm and possess well-crystalline hexagonal shaped nanostructures of hematite (α-Fe2O3) crystal phase. The role of EGCG in Fe3+ ion reduction and EGCG-MINP formation was confirmed by FTIR analysis. The VSM analysis has revealed that EGCG-MINPs were highly magnetic nanostructures with the hysteretic feature of saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) as 33.64 emu/g, 12.18 emu/g, and 0.33 Oe, respectively. Besides, significant (p < 0.001) dose-dependent (250-1000 μg/mL) antibacterial and antibiofilm activities against the NDM-1-producing Gram-negative Escherichia coli (AK-33), Klebsiella pneumoniae (AK-65), Pseudomonas aeruginosa (AK-66), and Shigella boydii (AK-67) bacterial isolates warranted the as-synthesized EGCG-MINPs as a promising alternative for clinical management of chronic bacterial infections in biomedical settings. In addition, molecular docking experiments revealed that compared to free Fe3+ and EGCG alone, the EGCG-MINPs or Fe-EGCG complex possess significantly high binding affinity toward HSA and hence can be considered as promising biocompatible nanodrug carriers in in vivo drug delivery systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要