Competitive adsorption behaviors and mechanisms of Cd, Ni, and Cu by biochar when coexisting with microplastics under single, binary, and ternary systems

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览6
暂无评分
摘要
In this study, the effects of coexistence with microplastics and co-ageing with the soil on adsorption behaviors and mechanisms of biochar for heavy metals were investigated. Adsorption experiments of Cd, Ni, and Cu by microplastics, biochar, and their combination were conducted in single, binary, and ternary systems. The results indicated that the heavy metal adsorption by microplastics was ranked as Ni > Cd > Cu, which increased with decreasing particle size, and the adsorption capacity of microplastics was enhanced after dry-wet and freezethaw ageing. Biochar preferentially adsorbed Cd in the single system, while the maximum adsorption of Cu was observed in the binary and ternary systems due to the minimizing impact of competition on the Cu adsorption by biochar. The heavy metal adsorption by the combination of microplastics and biochar was less than that by single biochar, and the smaller the particle size of microplastics, the greater the negative effects on heavy metal adsorption. Coexistence with microplastics reduced Cd adsorption of biochar by 0.72 %-50.35 %, Ni adsorption by 1.17 %-30.43 %, and Cu adsorption by 5.78 %-47.88 %, respectively. Moreover, coexistence with microplastics exacerbated the adverse impacts of competition on biochar adsorption for heavy metals. The contribution percentages of biochar mineral mechanisms for heavy metal adsorption were ranked as Cu > Cd > Ni. When coexisting with microplastics or after ageing, the mineral mechanisms of heavy metal adsorption by biochar significantly decreased. This study investigated the competitive adsorption behaviors and mechanisms of heavy metals by biochar when coexisting with microplastics, which highlighted that the application of biochar for the remediation of heavy metal pollution should be concerned with the impacts of microplastics.
更多
查看译文
关键词
Biochar,Microplastics,Heavy metals,Competitive adsorption,Ageing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要