The Effect of Sparsity on $k$-Dominating Set and Related First-Order Graph Properties

Nick Fischer,Marvin Künnemann, Mirza Redzic

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
We revisit $k$-Dominating Set, one of the first problems for which a tight $n^k-o(1)$ conditional lower bound (for $k\ge 3$), based on SETH, was shown (P\u{a}tra\c{s}cu and Williams, SODA 2007). However, the underlying reduction creates dense graphs, raising the question: how much does the sparsity of the graph affect its fine-grained complexity? We first settle the fine-grained complexity of $k$-Dominating Set in terms of both the number of nodes $n$ and number of edges $m$. Specifically, we show an $mn^{k-2-o(1)}$ lower bound based on SETH, for any dependence of $m$ on $n$. This is complemented by an $mn^{k-2+o(1)}$-time algorithm for all $k\ge 3$. For the $k=2$ case, we give a randomized algorithm that employs a Bloom-filter inspired hashing to improve the state of the art of $n^{\omega+o(1)}$ to $m^{\omega/2+o(1)}$. If $\omega=2$, this yields a conditionally tight bound for all $k\ge 2$. To study if $k$-Dominating Set is special in its sensitivity to sparsity, we consider a class of very related problems. The $k$-Dominating Set problem belongs to a type of first-order definable graph properties that we call monochromatic basic problems. These problems are the natural monochromatic variants of the basic problems that were proven complete for the class FOP of first-order definable properties (Gao, Impagliazzo, Kolokolova, and Williams, TALG 2019). We show that among these problems, $k$-Dominating Set is the only one whose fine-grained complexity decreases in sparse graphs. Only for the special case of reflexive properties, is there an additional basic problem that can be solved faster than $n^{k\pm o(1)}$ on sparse graphs. For the natural variant of distance-$r$ $k$-dominating set, we obtain a hardness of $n^{k-o(1)}$ under SETH for every $r\ge 2$ already on sparse graphs, which is tight for sufficiently large $k$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要