Chrome Extension
WeChat Mini Program
Use on ChatGLM

Graphene-based Two-Stage Enhancement Pressure Sensor for Subtle Mechanical Force Monitoring

ACS APPLIED MATERIALS & INTERFACES(2023)

Cited 0|Views6
No score
Abstract
The development of pressure sensors with high sensitivity and a low detection limit for subtle mechanical force monitoring and the understanding of the sensing mechanism behind subtle mechanical force monitoring are of great significance for intelligent technology. Here, we proposed a graphene-based two-stage enhancement pressure sensor (GTEPS), and we analyzed the difference between subtle mechanical force monitoring and conventional mechanical force monitoring. The GTEPS exhibited a high sensitivity of 62.2 kPa(-1 )and a low detection limit of 0.1 Pa. Leveraging its excellent performance, the GTEPS was successfully applied in various subtle mechanical force monitoring applications, including acoustic wave detection, voice-print recognition, and pulse wave monitoring. In acoustic wave detection, the GTEPS achieved a 100% recognition accuracy for six words. In voiceprint recognition, the sensor exhibited accurate identification of distinct voiceprints among individuals. Furthermore, in pulse wave monitoring, GTEPS demonstrated effective detection of pulse waves. By combination of the pulse wave signals with electrocardiogram (ECG) signals, it enabled the assessment of blood pressure. These results demonstrate the excellent performance of GTEPS and highlight its great potential for subtle mechanical force monitoring and its various applications. The current results indicate that GTEPS shows great potential for applications in subtle mechanical force monitoring.
More
Translated text
Key words
pressure sensor,subtlemechanical force,pressure-inducedstrain,acoustic wave detection,voiceprint recognition,pulse wave monitoring
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined