Linker regulation of CoO@Cu/C derived from self-assembly of MOF to enhance catalytic activity of organic contaminants

Materials Today Nano(2024)

Cited 0|Views11
No score
Abstract
The reduction of hazardous organic contaminants in agricultural wastewater to their corresponding amines is a key procedure in the fine chemical industry for pharmaceuticals, polymers, agrochemicals, and dyes. However, their effective and selective reduction reactions require compressed hydrogen at high temperatures, which are expensive and limited in supply. In this study, we present a novel approach using a layer-by-layer (LBL) assembly of copper metal-organic frameworks (MOFs) to prepare an earth-abundant, highly stable plasmonic nano-photocatalyst (i.e., Cu nanoparticles (NPs)) over Co3O4 nanocubes (indicated as CoO@Cu/C). The catalyst was produced by thermally treating the prepared core-shell material. Herein, highly monodispersed Cu NPs with an average size of 5 nm were embedded in the carbon shell on the surface of CoO. This unique composition resulted in a significant enhancement in the catalytic performance, yielding a remarkable efficiency (approximate to 100 % after 60 s) and exceptional selectivity (approximate to 98 %). Consequently, the reusable and sustainable CoO@Cu/C catalyst exhibited brings unattainable a remarkable catalytic performance and consistent activity even after six cycles in water owing to this unique composition of the homogeneously dispersed Cu-NPs inside the carbon shell. This, in turn, resulted in highly effective adsorption characteristics of the carbon matrix and high catalytic performance of ultra-small Cu-NPs on the CoO surface. Moreover, the activity of this catalyst is highly effective. This study presents an effective strategy for obtaining remarkable catalytic performance and selectivity via the coordination activation of Cu-NPs on the CoO surface.
More
Translated text
Key words
Linker,Metal,Self-assembly,Catalyst,Activity,Frameworks
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined